O percentil é uma medida estatística de posição, dividindo a distribuição ordenada dos dados em cem partes iguais.
Esta medida de posição não central fornece informações sobre a porcentagem de observações de uma variável, ordenada do menor ao maior, que estão abaixo de seu valor.
Dessa forma, o 20º percentil (P20) seria o valor da variável, situado no limite dos primeiros 20.
Como o percentil é calculado?
Como todos os quantis, o percentil pode ser calculado para dados agrupados ou não. Para os primeiros, existem fórmulas um tanto complexas que podemos encontrar em manuais de estatística. Para este último, o mais fácil é usar uma planilha.
Na imagem podemos ver uma forma de representação. O retângulo principal representa os dados ordenados do menor ao maior, e os azuis claros representam os diferentes percentis.
Mostramos os três mais relevantes. Principalmente o P50, que corresponde à mediana.
Também incluímos a fórmula para o seu cálculo.
Característica de percentil
Vejamos algumas das características mais relevantes do percentil.
- Em primeiro lugar, é semelhante a outras medições de posição não centrais. Portanto, ele nos informa sobre a posição de um dado em relação a outros.
- Por outro lado, em muitas situações, ele fornece informações mais detalhadas do que outras. Por exemplo, alguns índices de impacto de periódicos científicos usam isso em vez do quartil.
- Além disso, é muito útil para agrupar uma grande quantidade de dados. Quando trabalhamos com muitos casos, os outros quantis podem fornecer grupos que são muito grandes e difíceis de interpretar.
- No entanto, tem um lado negativo relacionado ao acima. Não é útil para amostras com poucos casos, pois os grupos seriam muito pequenos. Portanto, nessas circunstâncias, outros, como o quartil ou o decil, são recomendados.
Exemplo de percentil e índice de impacto
As revistas científicas medem sua importância com os chamados índices de impacto. Este é um indicador amplamente utilizado na ciência.
O mais conhecido é o JCR, que divide as publicações em quartis. No entanto, o segundo em importância é o SJR, que o faz em percentis.
Então, vamos imaginar um exemplo fictício como o da imagem.
Podemos ver que o que chamamos de magazine 1 está em P15, enquanto 2 está em P55 e 3 em P95.
Nesse caso, aquele com maior impacto é o número três, uma vez que os índices seriam ordenados do menor para o maior.